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Abstract
The high-dimensional pattern classification methods, e.g., support vector machines (SVM), have
been widely investigated for analysis of structural and functional brain images (such as magnetic
resonance imaging (MRI)) to assist the diagnosis of Alzheimer’s disease (AD) including its
prodromal stage, i.e., mild cognitive impairment (MCI). Most existing classification methods
extract features from neuroimaging data and then construct a single classifier to perform
classification. However, due to noise and small sample size of neuroimaging data, it is challenging
to train only a global classifier that can be robust enough to achieve good classification
performance. In this paper, instead of building a single global classifier, we propose a local patch-
based subspace ensemble method which builds multiple individual classifiers based on different
subsets of local patches and then combines them for more accurate and robust classification.
Specifically, to capture the local spatial consistency, each brain image is partitioned into a number
of local patches and a subset of patches is randomly selected from the patch pool to build a weak
classifier. Here, the sparse representation-based classification (SRC) method, which has shown
effective for classification of image data (e.g., face), is used to construct each weak classifier.
Then, multiple weak classifiers are combined to make the final decision. We evaluate our method
on 652 subjects (including 198 AD patients, 225 MCI and 229 normal controls) from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database using MR images. The experimental results
show that our method achieves an accuracy of 90.8% and an area under the ROC curve (AUC) of
94.86% for AD classification and an accuracy of 87.85% and an AUC of 92.90% for MCI
classification, respectively, demonstrating a very promising performance of our method compared
with the state-of-the-art methods for AD/MCI classification using MR images.
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1. Introduction
Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that leads to
progressive loss of memory and cognition function. Its early and accurate diagnosis is not
only challenging but also crucial for future treatments. Structural and functional brain
images such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron
emission tomography (FDG-PET) are powerful imaging tools in helping understand the
neural changes related to the neurodegenerative disorder of AD (Chan et al., 2003;
Davatzikos et al., 2010; Fan et al., 2008; Hinrichs et al., 2009; Magnin et al., 2009; Mueller
et al., 2005). Recently, many pattern recognition and machine learning techniques have been
widely investigated to identify the patterns of AD-related neurodegeneration by making use
of neuroimaging data (Davatzikos et al., 2006, epub; Hinrichs et al., 2009; Magnin et al.,
2009). Specifically, machine learning methods can provide a useful means to recognize a
pattern for a new test sample based on the information learned from the training samples.
For example, the morphological information about the cortical and subcortical structures of
the human brain can be measured by structural MRI and used to understand the
neuroanatomical differences among different populations (Desikan et al., 2009; Thompson
et al., 2002). Recently, various classification methods have also been proposed to identify
individuals with AD from normal control (NC) using MRI data (Cuingnet et al., 2011;
Davatzikos et al., 2007; Fan et al., 2005). In most of these existing classification methods,
two main steps are generally included which are: 1) Extraction and selection of
discriminative features from the original neuroimaging data, and 2) Learning of an optimal
separating hyperplane in a high dimensional feature space for performing AD classification.

Since the original neuroimaging data is extremely high dimensional but with small sample
size, extraction of discriminative features plays an important role in classification of AD and
normal control. Voxel-wise features, such as probabilities of grey matter (GM), white matter
(WM) and cerebrospinal fluid (CSF), play an important role in neuroimaging study, and
have been widely used to identify regional GM loss of AD compared to the normal aging
controls (Baron et al., 2001; Ishii et al., 2005). However, voxel-wise features are of huge
dimensionality, and the direct use of these features for classification is computationally
expensive and can often lead to low performance due to the ‘curse of dimensionality’ (Duda
et al., 2001). To address this critical issue, different types of feature extraction, grouping
and/or selection methods have been proposed to reduce the dimensionality of feature space.
For example, one popular way is to group voxels into multiple anatomical regions through
the warping of a labeled atlas (Lao et al., 2004; Magnin et al., 2009). On the other hand, the
brain regions can also be adaptively parcellated according to the similarity of local features
(Fan et al., 2007). In this way, regional features can be extracted and the total number of
features can be reduced significantly.

In addition to feature extraction, feature selection is another important technique for
dimensionality reduction which selects the most discriminative features and at the same time
eliminates the redundant features (Davatzikos et al., 2006, epub; Davatzikos et al., 2008;
Fan et al., 2005; Vemuri et al., 2008; Yoon et al., 2007). For example, principal component
analysis (PCA) is often used to reduce the feature space to the most discriminant
components (Davatzikos et al., 2008; Yoon et al., 2007). However, these techniques involve
a careful selection of parameters (e.g., the number of components) to preserve the important
subsets of feature space. On the other hand, since the disease often affects spatially
contiguous regions, instead of isolated voxels, the local spatial contiguity of the selected
discriminative features (voxels) should be carefully considered during the feature selection.
Thus, to capture the spatial consistency, feature selection is first performed to select the
discriminative voxel-wise features and the features in the neighborhood of the selected
voxels are also included for classification as done in (Vemuri et al., 2008). In (Hinrichs et
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al., 2009), the spatial locality information (i.e., neighboring relationship) was reserved by
enforcing the spatial regularity on the learned classifiers, thus leading to improvement in
classification performance. More importantly, since the feature subset selected by many
algorithms is dependent on the training data set, it may be not optimal for the test data set
due to the possible data overfitting problem. Thus, instead of building a single classifier with
an optimal subset of features, ensemble learning was used as a general meta-learning
method to aggregate the predictions of multiple classifiers for improving the generalization
ability and robustness of individual classifiers (Che et al., 2011; Hinrichs et al., 2009; Ratsch
et al., 2000; Valev and Asaithambi, 2001). Some well-known ensemble learning methods
such as Bagging and Boosting have been applied in analyzing neuroimaging data (Fan et al.,
2008; Hinrichs et al., 2009). Besides Bagging and Boosting which construct ensemble
classifiers by resampling different subsets of samples, another popular ensemble method,
i.e., random subspace ensemble, randomly resamples different subsets of features to build
multiple weak classifiers, and has been recently applied to analyzing functional MRI data
(Ho, 1998; Kuncheva et al., 2010). This ensemble method can alleviate the possible data
overfitting problem and achieve good generalization ability for the balance between optimal
feature selection and potential data overfitting to a specific population.

Advances in statistical learning technologies impel to develop some high-dimensional
classification algorithms that are capable of dealing with neuroimaging data. Machine
learning techniques are often used to design an optimal classifier that can accurately separate
a set of training samples (with known class labels) based on some optimization criteria and
can also be used to classify the test samples with good generalization. So far, various
classification models have been constructed for classification of different patterns between
AD and normal controls. Among them, support vector machine (SVM) may be the most-
widely used classifier, because of its high performance for classification of high-
dimensional data (Davatzikos et al., 2008; Fan et al., 2007; Kloppel et al., 2008, epub;
Magnin et al., 2009; Zhang et al., 2011). SVM is a supervised learning method which
searches for the optimal margin hyperplane to maximally separate different groups. It
constructs a maximal margin linear classifier in a high dimensional feature space by
mapping the original features using a kernel-induced mapping function. SVM classifier is
not only empirically demonstrated to be one of the most powerful pattern classification
methods, but also has provided many theoretical generalization bounds to estimate its
capacity. However, because SVM is based on evaluation of discrimination power for
classification, it has limitation in dealing with noisy data which is the case for neuroimaging
data. In addition, the discriminative features from neuroimaging data may vary across
different groups of subjects and thus could lie in multiple low-dimensional subspaces of a
high-dimensional feature space, which makes it difficult to build a single global classifier
with high classification accuracy and robustness to noises.

On the other hand, to enhance the robustness of classification to noises, sparse
representation technique, which can be regarded as one of the recent major achievements in
pattern classification, has been proposed and successfully used for various classification
problems, e.g., robust face recognition (Huang and Aviyente, 2007; Majumdar and Ward,
2009; Wright et al., 2009). In sparse representation-based classification, the input test
sample is coded as a sparse linear combination of the training samples across all classes via
L1-norm minimization, and then it evaluates which class of training samples could produce
the minimum reconstruction error of the input test sample with the sparse coding
coefficients. Although this technique has shown high performance for classification of high-
dimensional and noisy data such as faces, to the best of our knowledge, it has not been used
for AD classification.
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In this paper, we will investigate using sparse representation-based classifier (denoted as
SRC) proposed in (Wright et al., 2009), for accurate and robust AD/MCI classification by
using MRI data. Furthermore, instead of building a single global classifier, we propose a
novel local patch-based subspace ensemble method which builds multiple individual
classifiers based on different subsets of local patches and then combines them for more
accurate and robust classification. Different from random subspace ensemble which
resamples isolated voxels, our ensemble method randomly samples local patches and thus
potentially preserves the local structural information which is helpful for classification.

The main contributions of this paper can be summarized as follows: (i) Sparse
representation-based classification method is proposed for AD (or MCI) classification based
on MRI data. To the best of our knowledge, this kind of classification method was not
previously investigated for AD classification. (ii) A random patch-based subspace ensemble
framework is proposed to combine multiple weak classifiers for AD classification. This
framework can effectively avoid the difficulties in selection of an optimal subset of
discriminative features for the single classifier, and can also enhance the robustness of
classification. In addition, compared with the random (voxel-based) subspace ensemble, our
proposed random patch-based subspace ensemble considers the local spatial consistency
between neighboring voxels and is thus expected to achieve better classification
performance.

The rest of this paper is organized as follows. The proposed random patch-based subspace
ensemble classification framework is presented in detail in Section 2. Then, in Section 3,
extensive experiments and comparisons with other classification methods on the ADNI
dataset are presented to demonstrate the classification accuracy and advantage of the
proposed method. Finally, in Section 4, we conclude this paper and discuss the possible
future directions.

2. Method
In this section we will detail the proposed random patch-based subspace ensemble
classification framework with the sparse representation-based classifiers (denoted as
RPSE_SRC). Although the proposed classification framework makes no assumption on a
specific neuroimaging modality, for demonstrating its performance, the T1-weighted MRI
(Magnetic Resonance Imaging) data, which has been extensively studied for detection of
AD in the past decades, is used in this work. Specifically, the T1-weighted MR brain images
are skull-stripped and cerebellum-removed after a correction of intensity inhomogeneity
using nonparametric nonuniform intensity normalization (N3) algorithm (Sled et al., 1998).
Then, each brain image is segmented into three kinds of tissue volumes, e.g., gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) volumes. All three tissue volumes
of each brain image will be spatially normalized together onto a standard space (also called
the stereotaxic space) by a mass-preserving deformable warping algorithm proposed in
(Shen and Davatzikos, 2003). During image warping, the tissue volume within any size of
region is preserved, i.e., it is increased if the region is compressed, and vice versa. We will
call the warped mass-preserving tissue volumes as the tissue density maps in this paper.
These tissue density maps reflect the spatial distribution of tissues in an original brain by
taking into consideration the local tissue volumes prior to warping. In this work, the
spatially normalized tissue density maps of T1-weighted MRI data are used as features in
classification.

It is well known that the tissue density map of brain MRI is of high dimensionality,
consisting of considerably more voxels (i.e., more than hundreds of thousands) than subjects
(i.e., at most hundreds). When all the brain tissue densities are used as classification
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features, the high feature dimensionality will likely degrade the classification capability with
direct application of standard classifier models, such as linear discriminant analysis, decision
trees, and SVM. Classification of the high-dimensional features is still a challenging task
due to the small number of samples and the scalability problem. One common strategy is to
restrict the classification feature set to only those with significant discriminating power and
then construct a supervised classifier to perform classification. However, the discriminative
features from the high dimensional neuroimaging data may lie in multiple low-dimensional
feature subspaces, which make it difficult to find an optimal subset of discriminative
features for building a single global classifier that can achieve good classification
performance for all subjects. Furthermore, it has been observed that the disease-induced
structural changes may not occur at isolated voxels, but in several voxels-grouped local
regions (Hinrichs et al., 2009). Thus, the spatial consistency of the features should be taken
into account for more accurate classification.

To address the above issues, we develop a random patch-based subspace ensemble
classification framework to combine multiple individual weak classifiers for more accurate
AD classification. Specifically, the sparse representation-based classifier (SRC), which
shows high performance for robust classification of imaging data, will be used to design
each individual weak classifier. To capture the local spatial consistency of features, a subset
of local patches will be randomly resampled to construct each individual weak classifier.
Since each subset of patches defines a subspace of the whole brain feature space, each
individual weak classifier can be trained more easily in smaller subspace and thus the
dimensionality-to-subject ratio can be substantially improved. The accuracy of final
classification can be further improved by replacing a single classifier with an ensemble of
multiple classifiers.

Figure 1 shows the flow chart of our random patch-based subspace ensemble classification
framework, which consists of three main steps: 1) patch extraction and random patch
sampling; 2) design of individual weak classifier using the sparse representation-based
classifier (SRC); 3) ensemble of multiple weak classifiers to produce more accurate
classification. We will detail each step in the rest of this section.

2.1. Patch Extraction
For simplicity, we uniformly divide the tissue density maps into patches of fixed size
without overlapping. For accurate classification, the noisy voxels should be first excluded
from the feature subspaces. On the other hand, the sampled subspaces for the individual
classifiers should be diverse to give complementary information for effective ensemble. To
balance the tradeoff between accuracy and diversity, we decided to carry out a preselection
of individually important voxels in the hope that the relevant voxels will be contained within
the sampled patch subspaces. We perform the simple t-test on each voxel of the whole brain
and select the relevant voxels with the p-value smaller than 0.05. The patch extraction is
carried out based on these preselected relevant voxels. The patch pool for random sampling
is composed of the patches in each of which more than 50% voxels are the preselected
relevant voxels. To construct a feature subspace for a weak classifier, we randomly select a
subset of patches from the patch pool and all the preselected relevant voxels contained in the
sampled patches are concatenated into a feature vector for classification. Each random
sampling defines a feature subspace for one weak classifier. Thus, we can perform multiple
random samplings to extract different feature subspaces and construct multiple individual
weak classifiers for ensemble.
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2.2. Sparse Representation-based Classifier (SRC)
After randomly sampling a subset of patches from the patch pool, the tissue densities from
the sampled patches are concatenated into a feature vector for representation of each training
subject. We construct an independent weak classifier for each randomly sampled subspace,
using a sparse representation-based classification method.

Sparse representation has been successfully used in various applications where the original
signal needs to be reconstructed as accurately as possible, such as denoising (Elad and
Aharon, 2006), image inpainting (Fadili et al., 2009), and coding (Hazan et al., 2005).
Recently, a sparse representation-based classifier (SRC) was proposed to harness the
sparsity for discrimination (Wright et al., 2009). Instead of using the sparsity to identify a
relevant model or relevant features that can later be used for classifying all test samples, the
SRC exploits the discriminative nature of the sparse representation for classification. The
basic idea of SRC is that the test data is considered as a linear composition of the training
data set belonging to the same category if sufficient training samples are available for each
class. Different from some conventional classifiers that optimize the discrimination power in
the objective function, SRC constructs a nonparametric dictionary using all training data set
across all classes and seeks for the sparse representation of a test sample in the
nonparametric dictionary. SRC first codes the test sample as a sparse linear combination of
all training samples by L1-norm minimization and then performs classification by evaluating
which class produces the minimum reconstruction error. It combines the sparsity and
reconstruction error in sparse representation for classification. With the sparsity properly
harnessed, SRC achieves high performance for classification of high-dimensional data such
as face images, and also high robustness to noise such as image occlusion and corruption
(Wright et al., 2009). It also boosts the research on the sparsity based pattern classification
(Majumdar and Ward, 2009; Yang et al., 2011).

In this work, we investigate using the sparse representation-based classifier to construct the
individual weak classifier in each feature subspace. The classification problem is formulated
as finding a sparse representation of the test image with respect to all the training data set.
The sparse coding can be accurately and efficiently solved by the L1-norm minimization.
Then the classification of a new test sample is made by checking which class produces the
least coding error with the associated sparse coefficients. The class with the best
approximation by sparse representation is assigned as the output class of the test sample.
Unless specially noted, all feature vectors in this paper are column vectors and represents the
standard Euclidean norm while || · ||1 represents the standard L1 norm. Suppose that there are
N training samples represented by X = [X1 …, Xl …, XC] ∈ ℜM×N belonging to C categories

(classes), where N = N1 + ··· Nl + ··· NC and  consists of Nl

training samples of the l-th category with each feature vector  of M dimensionality. In the
this study C =2, but the proposed framework can allow to include more classes such as
subjects with MCI. The classification model based on sparse representation can be
summarized as (Wright et al., 2009):

1. Input: A matrix of training samples X = [X1 …, Xl …, XC] ∈ ℜM×N for C classes
with each column being one feature vector of a training sample, a test sample
represented by one column vector y ∈ ℜM, and an optional error tolerance ε>0.

2. Normalize each column of X and the test sample y to have unit L2 norm.

3. Compute the decomposition coefficient vector α̂ by solving the L1-norm
minimization problem by sparse coding:
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(1)

4. For each test sample y, compute the residual (i.e., the sparse reconstruction error)
with the sparse coefficients α̂l associated to each category/class l:

(2)

5. Output: The class label for the test sample y is assigned as the class with the
minimum residual over all classes:

(3)

The L1-norm minimization in Equation (1) can be efficiently solved by using some L1-
regularized sparse coding methods such as those proposed in (Boyd and Vandenberghe,
2004; Candes and Romberg, 2005; Chen et al., 2001; Kim et al., 2007). We can see that the
classification of the test sample y depends on the residuals. There are two important terms in
the above classification model. One is to characterize the signal sparsity by the L1-norm
constraint || α ||1. Another one is to characterize the signal fidelity by the L2-norm term ||Xα
− y||2 ≤ ε especially when the test sample y is noisy. Ideally, the sparse coefficients of || α ||1
are associated with the training samples from a single class so that the test sample can be
easily assigned to that class. However, noise and modeling error may also lead to small
nonzero sparse coefficients associated with multiple classes. Instead of classifying test
sample only based on the sparse coefficients, the classification made by Equation (3) is
based on how well the sparse coefficients associated with the training data in each class can
reconstruct the test sample, which can better harness the subspace structure of each class.
Thus, SRC is able to effectively combine the discriminative nature of sparsity and the
reconstruction power for classification. For each randomly sampled patch-based subspace,
we construct a nonparametric dictionary composed of all training data samples to build a
sparse representation-based classifier. Finally we can get multiple SRC classifiers based on
the multiple random samplings of the feature space.

2.3. Ensemble of Weak Classifiers
The classifier ensemble is usually considered to be more accurate and robust than individual
classifier. The simple majority voting is one of widely used methods for fusion of multiple
classifiers. However, this method puts equal weight on the outputs of all individual weak
classifiers to ensemble. In fact, the classifiers might have different classification confidences
for a test sample, e.g., the test sample may be located near the decision boundary of some
classifiers (low classification confidence) or far from the decision boundary of other
classifiers (high classification confidence). From Equation (3), we know that the
classification of a test sample is performed in terms of the residuals with respective to the C
classes, which also measures the similarity between the test sample and the training data of
each individual class. Smaller residual also indicates that the test sample is better
approximated by the sparse representation of the training samples belonging to the
corresponding class. We combine the multiple weak classifiers by using the residuals of
sparse representation instead of the class label output. In this way, if the residuals of a
classifier corresponding to the C classes are close to each other, the classifier will have low
contribution to the final ensemble, and vice versa. Suppose that we have K weak classifiers
for final ensemble. Defining  as the residual of the test sample y obtained from the k-th
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weak classifier corresponding to the l-th class, then the empirical average of the l-th
residuals over the K weak classifiers can be calculated as follows:

(4)

Finally, the class label of the test sample y can be assigned to the class with the minimum
average residual as:

(5)

3. Results
3.1. Data set and image pre-processing

Data used for evaluation of our developed classification algorithm were taken from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).
The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of the ADNI has been to
test whether serial magnetic resonance imaging (MRI), Positron Emission Tomography
(PET), other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W. Weiner, M.D., VA Medical Center and
University of California, San Francisco. ADNI was the result of efforts of many co-
investigators from a broad range of academic institutions and private corporations. The
study subjects was recruited from over 50 sites across the U.S. and Canada and gave written
informed consent at the time of enrollment for imaging and genetic sample collection and
completed questionnaires approved by each participating sites Institutional Review Board
(IRB).

Our experimental evaluations utilized a portion of the ADNI database. We used the T1-
weighted Magnetic Resonance (MR) imaging data from the baseline visit. MRI acquisition
had been done according to the ADNI acquisition protocol in (Jack et al., 2008). T1-
weighted MR image data from 652 ADNI participants are used for evaluation. These 652
subjects include 198 AD, 225 MCI (112 stable MCI (sMCI) and 113 progressive MCI
(pMCI)) and 229 NC. Table 1 presents a summary of the demographic characteristics of the
studied population from the ADNI database in this paper.

The image processing of the T1-weighted MR brain images was performed as described in
Section 2, which included the correction of intensity inhomogeneity, skull-stripping, and
cerebellum-removing. Furthermore, each MR brain image was segmented into three tissue
types: GM, WM and CSF, and was further spatially normalized into a template space by a
mass-preserving registration framework (Shen and Davatzikos, 2003). After spatial
normalization, the tissue density maps were smoothed using a Gaussian kernel (its sigma
was set to the default value 1.0) to improve signal to noise ratio. Since the gray matter (GM)
probability maps were more related to AD than white matter and CSF, we used only the GM
probability maps for classification in the experiments. To further reduce the size of image
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data, we downsampled the GM tissue density maps from 256×256×256 to 64×64×64 voxels.
The downsampled GM tissue density maps were directly used as the representation of
features for classification.

In the experiments, 10-fold cross-validation is performed to evaluate the classification
performance. For each time, one-fold data set is used for testing while the other folds are
used for training. The training set can be split further into training part and validation part
for parameter tuning. The final classification accuracy is the average of the classification
accuracies across all 10 cross-validation folds.

3.2. AD classification results
(1) Results using single classifier—Before we evaluate the performance of the
proposed RPSE_SRC classification framework, we first test the classification performance
using a single sparse representation-based classifier (SRC) on the MRI data, in comparison
with the standard SVM classifier which has been widely used for AD classification. In this
experiment, the SVM classifier is implemented using LIBSVM toolbox (Chang and Lin,
2001), with a linear kernel and a default value set for the parameter C (i.e., C=1). Both the
SRC and SVM classifiers are tested on the selected voxel-wise features. To test the
classification performances on varying number of relevant features, we perform the t-test on
each voxel of the GM tissue density maps. Then all voxels are ranked in ascending order
according to their p-values of the t-test. Smaller p-value indicates larger group difference for
the voxel-wise feature with more discriminative information for classification. We select
different numbers of top ranked voxels in terms of p-values to construct feature vector as the
inputs to SRC and SVM classifiers, respectively, for classification. The number of top
ranked features varies from 200 to 24000. Figure 2 shows the classification accuracies of
SVM and SRC classification methods with respect to different numbers of top ranked
features selected for AD classification.

As can be seen from Figure 2, SVM classifier performs better than the SRC method when
the number of features is smaller than 1500, but its performance degrades gradually and is
inferior to SRC when the number of features is further increased beyond a certain number.
In contrast, SRC can achieve much better classification performance than SVM when more
features are used. Since SVM classifier aims to maximize the discriminative power on the
training data, the features with larger p-values will provide more irrelevant or noisy
information which will reduce the discrimination capability and degrade the classification
performance. This explains why SVM achieves better performance with a relatively small
number of top ranked features. On the other hand, SRC is based on combining the sparsity
and reconstruction via sparse representation and thus can achieve high robustness to noisy
features due to its reconstruction property (i.e., The classification of a test sample is made by
checking which class produces the least reconstruction error with the associated sparse
coefficients). In general, to make the L1-norm sparse coding computationally feasible, the
dimensionality of the training and testing features should be reduced by extracting a subset
of features from the original image. However, our experimental results show that SRC
method continues to perform well when the feature dimensionality increases.

(2) Effects of classification parameters—Next, we have performed a number of
experiments to test the effects of classification parameters on the performance of the random
patch based subspace ensemble classification framework. The SRC is used to construct each
weak classifier. In general, there are three important parameters that are required to
determine and affect the ensemble performance, which are, respectively, the patch size, the
sampling rate (i.e., the ratio of sampled patches to the cardinality of patch pool), and the
ensemble size (i.e., the number of weak classifiers for the final ensemble). Since ensemble
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of different weak classifiers may produce different classification results, the ensemble
classification accuracy is computed by averaging the accuracies of multiple independent
runs (20 in our experiments) for each ensemble size.

It is worth repeating that the main purpose for randomly sampling local patches, instead of
voxels, is to capture the information of local spatial consistency for AD classification. Thus,
in this experiment, we vary the patch size from 1×1×1 (i.e., voxel-wise) to 3×3×3, 5×5×5,
7×7×7, 9×9×9 and 11×11×11 voxels to test their classification performances. In total, there
are about 22880, 847, 185, 64, 35 and 16 patches of size 1×1×1, 3×3×3, 5×5×5, 7×7×7,
9×9×9 and 11×11×11, respectively. We randomly select 20%, 40%, 60% and 80% patches
from the patch pool to be concatenated into a feature vector for construction of weak
classifier. If the sampling rate is small, i.e., less patches are selected for construction of each
classifier, more diverse classifiers are usually required to obtain the coverage of feature
space and achieve the stable classification performance. Based on our experiments, about 15
weak classifiers can obtain stable ensemble classification performance. Thus, the ensemble
size, i.e., the number of weak classifier used for the final ensemble, is varied from 1 to 20.
Figure 3(a)–(d) show the SRC ensemble classification results (Classification accuracy vs.
Number of weak classifiers) by using different patch sizes at the sampling rates of 20%,
40%, 60% and 80% patches, respectively. From Figure 3, we can see that the classification
performances are improved by increasing the patch size from 1×1×1 to 7×7×7 voxels, but
further increasing the patch size to 9×9×9 and 11×11×11 voxels will degrade the
classification performance. The classifiers ensemble by using the patches of 7×7×7 voxels
consistently outperforms those using other patch sizes at four different sampling rates. This
may indicate that the patch of size 7×7×7 voxels is able to capture the local spatial
consistency of AD-related patterns on this imaging data. When the sampling rate is small,
e.g., 20%, the ensemble performance can be gradually improved by increasing the number
of weak classifiers until most of the feature space is covered. On the other hand, when the
sampling rate is large, e.g., 80%, small number of weak classifiers can get good ensemble
performance and further increasing the number of weak classifiers will likely result in
redundancy. Nevertheless, about 15 weak classifiers can obtain stable ensemble
performance and the ensemble of multiple classifiers often performs better than the
individual classifier.

Another important parameter that affects the ensemble performance is the sampling rate,
which determines the dimensionality of sampled subspace (i.e., how many local patches
should be selected in each random sampling) to construct a weak classifier. Smaller
sampling rate can be used to better address the ‘curse of dimensionality’ problem and obtain
high diverse subspaces, but the subspace covers less information which limits the
performance of each individual weak classifier. On the other hand, high sampling rate can
capture more information of the feature space and achieve better performance for each
individual weak classifier, but the sampled subspaces will be of high dimensionality and
have less diversity. Figure 4 demonstrates the RPSE_SRC classification results
(Classification accuracy vs. Number of weak classifiers) by using five different sampling
rates which are 20%, 40%, 60%, 80% and 100% with the patch size fixed to 7×7×7 voxels.
The 100% sampling rate indicates that all patches are selected and thus only one classifier is
constructed to make the classification. From this figure, we can see that the ensemble
classification accuracy is gradually improved by increasing the number of weak classifiers
with the lower sampling rate, while classifiers ensemble is less sensitive to the number of
weak classifier with higher sampling rate. To balance the tradeoff between the accuracy and
diversity of weak classifiers, sampling 40% and 60% patches can achieve better
classification performance than others. At the sampling rate of 60%, we can see that the
combined classification accuracy is stable when the number of weak classifiers is 12 while
more weak classifiers are required to achieve better combined classification accuracy at the
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sampling rate of 40%. The results also show that the ensemble of multiple weak classifiers
consistently performs better than that using only one classifier (i.e., sampling 100%
patches), when a sufficient number of weak classifiers are used.

In addition, for analysis of the performance variance, we compute the standard deviations
(std) of the ensemble classification accuracies of multiple independent runs with the patch
size set to 7×7×7. At a certain ensemble size, the std often decreases by increasing the
sampling rate, e.g., the std decreases from 0.021, 0.015, 0.014 to 0.011 when the sampling
rate is increased from 20%, 40%, 60% to 80%, respectively, with the ensemble size set to 7.
On the other hand, at a certain sampling rate, the std will gradually decrease by increasing
the ensemble size (i.e., the number of weak classifiers for ensemble), e.g., the std decreases
from 0.022 to 0.004 when increasing the ensemble size from 1 to 20 at the sampling rate of
60%. Thus, our method can achieve stable classification performance by ensemble of
multiple classifiers.

(3) Results comparison—To compare with the widely used SVM classifier, we perform
the random patch based subspace ensemble method by replacing SRC with SVM on the
same data set. Similar to the previous experiments, the SVM classifier is implemented using
LIBSVM toolbox (Chang and Lin, 2001), with a linear kernel and a default value for the
classifier parameter C (i.e., C=1). We have tested the random patch based subspace
ensemble method with the SVM classifiers (RPSE_SVM) on the same feature space in patch
extraction as that with the SRC by varying the patch size and sampling rate. The patch size
and sampling rate that achieve best ensemble classification accuracy are 7×7×7 voxels and
60%, respectively, which are same as those in ensemble of SRC. However, the ensemble
classification accuracy may not be optimal for SVM. From Figure 2, we know that the SVM
classification performance will degrade when the number of top ranked features is increased
beyond 1500, since more irrelevant features are included in the feature set.

To make more fair comparison, we preselect a smaller number of relevant voxels for patch
extraction by using a threshold of p-values smaller than 0.05 to improve the accuracy of
individual SVM classifiers. However, by using a smaller threshold, less number of relevant
voxels can be obtained for random sampling, which will result in low diversity of individual
weak classifiers and also degradation of ensemble classification performance. We have
tested different thresholds of p-value from 0.05 to 0.0001 to preselect the relevant voxels
and determine the optimal threshold (e.g., 0.001) with the best ensemble classification
accuracy. Thus, the voxels with p-values smaller than 0.001 are preselected for patch
extraction. All other processing steps are the same as those used to implement the
RPSE_SRC. Similar to the SRC based experiments, we also vary the patch size from 1×1×1
to 3×3×3 5×5×5, 7×7×7, 9×9×9 and 11×11×11 voxels by sampling 20%, 40%, 60%, 80%
patches. The optimal patch size with which the ensemble SVM achieves the best
classification performance is 9×9×9 voxels. Figure 5 shows the comparison of the ensemble
classification performance with SVM and SRC classifiers (Classification accuracy vs.
Number of weak classifiers) at the four different sampling rates: 20%, 40%, 60% and 80%.
From this figure, we can see that RPSE_SRC consistently performs better than the
RPSE_SVM at different sampling rates.

In addition, we evaluate the ensemble of individual SVM and SRC classifiers using the
kappa-accuracy diagram which evaluates the level of agreement between two classifier
outputs while correcting for chance (Rodriguez et al., 2006). Figure 6 shows the diversity-
accuracy diagrams of the pairs of individual SVM and SRC classifiers, the centroids of the
kappa-accuracy cloud points and their ensemble classification accuracies. From this figure,
we can see that there is no great difference in the kappa diversity of individual SVM and
SRC classifiers but SRC classifiers achieve much higher accuracy than SVM classifiers.
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In practice, the three classification parameters (i.e., patch size, sampling rate and ensemble
size) can be optimized in each fold with the training data set to run the random patch-based
subspace ensemble classification algorithm. However, from the above analysis, the effect of
ensemble performance by ensemble size is stable if the number of weak classifiers is larger
than 15 for ensemble. Thus, for simplicity, the ensemble size is fixed to 17 in this
experiment. The other two parameters are optimized with the training data set. We also run
the COMPARE algorithm (Fan et al., 2007) on the same data set for comparison, by using
its suggested parameters. COMPARE algorithm divides the image space into
homogeneously discriminative regions and the voxel values in these regions are aggregated
to form the features for classification. SVM classifier is employed to perform classification.
The classification accuracy by COMPARE algorithm is 81.07%, with 78.84% sensitivity
and 82.94% specificity. The main reason that COMPARE algorithm gets lower
classification performance is likely because the adaptively extracted regions may not be
discriminative enough for different populations. Actually, it is not easy to identify a set of
discriminative regions for large population. Table 2 gives the comparison of AD
classification in five different classification methods, which are COMPARE, single SVM
classifier (SVM), single SRC classifier (SRC), random patch-based SVM ensemble
(RPSE_SVM), and random patch-based SRC ensemble (RPSE_SRC), respectively. For
single SVM and SRC classifiers, we report their best classification results in Table 2 among
those on the different numbers of top ranked features selected by t-test as shown in Figure 2.
The ROC curves of these methods are shown in Figure 7. We can see that single SRC
method performs better than COMPARE and both single and ensemble SVM methods.
RPSE_SRC can further improve the classification accuracy by ensemble of multiple weak
classifiers.

3.3. MCI classification results
In addition to classification of AD and NC, we perform the single SRC and the RPSE_SRC
algorithms as well as the SVM and RPSE_SVM algorithms for classification of MCI and
NC, where 225 MCI and 229 NC subjects are used for test. Similar to AD classification, we
select different numbers of top ranked voxels in terms of p-values to construct feature vector
as the input to the SRC and SVM classifiers. The number of top ranked features varies from
200 to 24000. Figure 8 shows the classification accuracies of single SVM and SRC methods
with respect to different numbers of top ranked features selected for MCI classification. The
random patch-based subspace ensemble classification framework with the SVM and SRC
are also performed on the same data set. The classifier parameters are optimally determined
based on the cross validation of training data set. Table 3 lists the MCI classification results
of the SVM, SRC, RPSE_SVM, and RPSE_SRC methods, respectively. For single SVM
and SRC methods, we report their best classification results in Table 3 among those on the
different numbers of top ranked features selected by t-test as shown in Figure 8. These
results also show that the single SRC method performs better than the SVM-based methods.
RPSE_SRC can further improve the classification accuracy by ensemble of multiple weak
classifiers, which indicates the efficacy of the proposed classification method in classifying
MCI from NC.

3.4. Comparison with existing classification methods
Furthermore, we have compared the results of the proposed RPSE_SRC method with some
recent results reported in the literature that are also based on MRI data of ADNI subjects for
AD and MCI classification. In particular, three recent methods are compared in Table 4, as
briefly described next. In (Hinrichs et al., 2009), the linear Program (LP) boosting method
with novel additional regularization have been proposed to incorporate the spatial
smoothness of 3D MR imaging space into the learning process and improve the
classification accuracy. In (Cuingnet et al., 2011), ten methods, which include five voxel-
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based methods, three cortical thickness based methods, and two hippocampus based
methods, are compared with the linear SVM classifier on MRI data of ADNI subjects. The
best result using voxel-wise gray matter (GM) features is provided in Table 4. In (Zhang et
al., 2011), 93 volumetric features extracted from the 93 regions of interest (ROI) in GM
density maps of MRI data have been used as classification features and SVM classifier is
used to make classification. The results of these three methods, along with our proposed
method, reported in Table 4 further show the efficacy of our proposed method in AD and
MCI classification.

3.5. Discussion
Since the AD is affected in certain pathological patterns, only a subset of voxels may be
related to AD changes. Thus, the simple thresholding based on t-test was performed to
preselect the relevant voxels for patch extraction and random sampling in the above
experiments. We have also performed the RPSE_SRC on the whole brain tissue density
maps and the classification accuracy is 87.61% with 80.87% sensitivity and 93.42%
specificity which is worse than that on the preselected brain regions. This shows the
importance of preselection of relevant voxels in our proposed RPSE_SRC method. For
accurate classification, the sampled feature space should include more relevant voxels. If the
whole brain is used for random sampling, it is more likely to select the unimportant and
noisy voxels which will degrade the accuracies of individual classifiers. On the other hand,
the threshold on the p-value cannot be too strict to get diverse subspaces on individual
classifiers for effective ensemble. This threshold can be also regarded as an additional
parameter of the algorithm, which can be optimized by using cross validation on the training
data set. For simplicity, we use a fixed value, i.e., 0.05, in our experiments. It is worth
noting that the use of the simple t-test to select the relevant features may eliminate features
that are unimportant in isolation but discriminative when combined with others. Using more
complex feature selection methods (e.g., wrapper-based) may overcome this problem.
However, in our method, t-test is used only for a coarse feature selection and another
random feature (patch) selection process will be performed in subsequent steps. Our
experiments show that even with the simple t-test, our method can achieve better
performance than conventional methods. More complex feature selection methods could be
used to further improve the performance which will be our future work.

The sampled feature subspace has direct effect on the performance of individual classifier. If
the sampled patches are from the AD-affected regions, the corresponding individual
classifier will achieve high classification accuracy. On the other hand, the classification
accuracy will be low if the sampled patches are from the less relevant regions. For each fold
of the training data set, we have constructed 30 individual classifiers by randomly sampling
the original feature space 30 times with the optimized patch size. The classification
accuracies of the individual classifiers are sorted in ascending order. The average sampling
frequencies of the available patches from the five most accurate classifiers are computed
across the ten-fold cross-validation to evaluate the importance of patches. We choose the
patches which are more frequently sampled in high-accuracy classifiers. We found these
patches are located at the brain regions such as the hippocampus, the parahippocampal
gyrus, the entorhinal cortex and the amygdala which are consistent with those reported in the
literature (Cuingnet et al., 2011; Zhang et al., 2011).

In addition to reporting the classification accuracy, visualizing the learned decision process
is also important to understand the classification algorithm and gain clinical insights.
However, as in most AD classification methods (e.g., SVM), visualizing the learned
decision process of our method is not informative which is a limitation that is expected to
address in the future.
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4. Conclusion
In this paper, we have investigated using the SRC for classification of high dimensional
MRI data. Furthermore, we have presented a random patch based subspace ensemble
classification framework with the SRC. Instead of randomly sampling the voxels, the local
patches are extracted from the relevant regions to capture the local spatial consistency and
are randomly sampled to construct a feature subspace for design of individual weak
classifier. Then, multiple classifiers are combined to make more accurate and robust
classification. The experimental results on ADNI database show that SRC continues to
perform well when the dimensionality increases. It achieves better classification
performance than SVM classifier when more features are used for classification. The
random patch based subspace ensemble classification can further improve the classification
accuracy by combining multiple weak classifiers and using local patches to capture spatial
consistency.

In the current paper, we validate our method using MRI data from ADNI. However, other
modality of data can also be used in our method. In the future work, we will validate our
method on other imaging data, e.g., PET. Moreover, since recent studies have shown that
different modalities of neuroimaging data can provide complementary information for AD
diagnosis, we will extend our method to multiple modalities of biomarker to further improve
the accuracy of AD classification..
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The framework of the random patch-based subspace ensemble classification method.
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Figure 2.
Classification accuracies of SVM and SRC with respect to different numbers of top ranked
features selected for AD classification.
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Figure 3.
Classification results using different patch sizes at four sampling rates: (a) 20%, (b) 40%, (c)
60%, and (d) 80%.
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Figure 4.
SRCs ensemble classification results using five different sampling rates with the patch size
set to 7×7×7 voxels.
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Figure 5.
Comparison of ensemble classification results using SVM with 9×9×9 patch size and SRC
with 7×7×7 patch size at four sampling rates.
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Figure 6.
The diversity-accuracy diagrams of SVM and SRC classifiers. The patch size, sampling rate
and ensemble size are set to 7×7×7, 60% and 20, respectively. The x-axis represents average
accuracy of a pair of classifiers, and y-axis represents diversity of a pair of classifiers
evaluated by the kappa measure. The blue and red dashed vertical lines show the ensemble
accuracies of SRC and SVM, respectively. The blue and red hexagrams denote the centroids
of SRC and SVM classifier clouds, respectively.
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Figure 7.
ROC curves of five different methods for AD classification.
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Figure 8.
Classification accuracy of SVM and SRC with respect to different numbers of top ranked
features selected for MCI classification.
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Table 1

Demographic characteristics of the studied population (from the ADNI database). The values are denoted as
mean ± standard deviation.

Diagnosis Number Age Gender (M/F) MMSE

AD 198 75.7±7.7 103/93 23.3±2.0

MCI 225 75.2±7.4 154/71 26.7±1.8

NC 229 76.0±5.0 119/110 29.1±1.0
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Table 2

Comparison of AD classification in five different classification methods.

Methods ACC (%) SEN (%) SPE (%) Area under ROC (%)

COMPARE 81.07 78.84 82.94 87.65

SVM 84.57 72.82 94.76 91.40

SRC 87.83 80.84 93.85 93.77

RPSE_SVM 85.53 75.47 94.24 92.39

RPSE_SRC 90.80 86.32 94.76 94.86
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Table 3

Comparison of MCI classification on 4 different classification methods.

Methods ACC (%) SEN (%) SPE (%) Area under ROC (%)

SVM 81.33 73.00 89.53 87.58

SRC 85.08 82.77 87.35 91.66

RPSE_SVM 82.26 73.70 90.69 90.92

RPSE_SRC 87.85 85.26 90.40 92.90
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